Last Time

e What is viscosity?
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e Estimate of viscosity at 79 ~ 1 fm
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e The relevant quantity is mean free path by expansion rate:
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® The pressure is reduced in the longitudinal direction:

m=r-37



Spectra
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n QGP EOS+RQMD, Teaney et al.
n QGP EOS +PCE, Hirano et al.
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Where does hydro stop?

e Viscosity: start from below and work up

e Energy Loss: start from above and work down
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Constraints on 77 from Energy Loss: working down

e Classical Boltzman Simulations by Molnar /N = 1000 and og = 10 mb
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This puts a bound on the viscosity:
® O)p § 10 mb

e Compare

1 10 mb 1000 A T
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e Modelling to get from high pr to low pr

n/sz 0.1



Working up: Thermal Spectra
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In equilibrium the thermal distribution is

- | B 1 o
fO - 6ano¢/T L 1 o emr cosh(y—ns) — 1 ' eE/T — 1

The effect of the viscosity is to reduce the longitudinal pressure.

T+ —p——— /dgp (fo+01)



Thermal Transverse Momentum Spectra at Mid Rapidity:
y=0
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Want to calculate 0 f: Use the linearized Boltzmann equation
pM
E ufp: dF12—>3p (f1f2—f3fp)
1,2,3

1=

Linearize the Boltzmann equation:
o Substitute f — f€+&f with f¢=e Pu/T
e Keep first order in gradients.
e Use equilibrium: f{f5 = f§ff

5f1+5f2 df3

4 f4

p.u
= Oulp =/ dl'12—3p 113
1,2,3
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This is an integral equation for o f .
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Guess the solution to the integral equation

e 0 f is proportional to the strains:
(Voyu,), Vyut, vV, T.
o (fisascalar 4&f o x(p)p*p” (O, uy).

o Iflrestrict f(p) = fo(1 + g(p)) where g(p) is a polynomial of degree less than

three, the form is completely determined:
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® This is sometimes called the first approximation

e Itis equivalent to a pp dependent relaxation time approximation.



Full analysis
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Which gradients actually appear? 0, = —u, D + V,,
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e Use ideal EOM Du = —zL—Z; then find
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Put it all together:
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e Look at the bulk viscosity. For a massless ideal gas we have:

4
exT*andTc, =4eande+p= —e — oo =0
3 NI

— The bulk viscosity vanishes for a scale invariant ultra-relativistic gas.

— It also vanishes for a non-relativistic Boltzmann gas

e The form of the shear correction motivates the polynomial ansatz taken before.
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Then looking only at the viscous piece:
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C=1 for a classical gas



Viscous corrections to p spectrum

AN, + §dN = /pﬂdzufomf

ddN .
Want to compute N, -

Pa P33 o 5 N pr 21
5f = folste 2 (V) fo(T>3T

Now you can do these integrals:
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Viscous corrections grow with pp
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® \When viscous corrections become of order one we must stop hydrodynamics.

e Viscosity puts a bound on how high in p the hydrodynamics may be applied

max

e For this room: % ~ 10* and pTT ~ 102. Nown ~ e~ P/T

You can't see the end!

max

e For heavy ion collisions: 1" ~ 200 MeV find p7-®* ~ 1 GeV.



Elliptic Flow in Heavy lon Collisions: Qualitative

Measure the Anisotropy:

dN
do

vz = (c0s(2¢))

Can also bin in pT:

dN

ppoTd¢ = N(l + QUQ(Z?T) COS(2¢) 4. )

vy = (cos(29)),,.

Categorize the collision geometry:

— = N(1 4 2wvycos(2¢) + - -
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participants

1. Np = The number of barticipating nucleons .

2. Ryms = \/<x2 + y2) . The size of the colli-

sion zone.

3. € = The anisotropy of the initial geometry

Facts:

1.

% X Np — the number of participants

2. € X Np — the number of participants nucleons.

2
3. Centrality = (L) . Example 16 — 24% centralisb ~ 7 fm

2R,



Basic Analysis of Elliptic Flow:

® Since € is small we expect:

vy o< € oc 1 — N, /N

e For a system with no other scales in the problem, the physics is

iIndependent of centrality
vy = Const x (1 — N,/N]"*")

Ideal hydrodynamics has no scales and the response is essentially trivially

related to geometry.

e [or a dilute system (with constant cross sections) we expect collective

response to be proportional to multiplicity v X ‘2—];[ X Np.

Vg X N,(1 — Np/Ngwx)



Dilute Gas
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e Viscous hydrodynamics is in-between these two cases.



Observation of v at RHIC
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e |f nothing changes as a function of centrality then expect: v9 X €

e Up to corrections: v9 X € in data




Translation
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e Atlower pr =~ (0.6 GeV the response is directly proportional to €
e At higher pr =~ 1.4 GeV the effects of other scales come in.

Beware non-flow! This is improtant to settle



Solution to Boltzmann Equation: (Molnar & Kolb)
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® Y;—o = 10 correspondsto (I';/7)g = 0.04

e For the Boltzmann equation, vy curves over in peripheral collisions.



Vo as a Function of Transverse Momentum:
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e uy(pr) increases until pr &~ 2.0 GeV and then flattens.
® v, islarge even at pr ~ 3.0 GeV.

e Thereisa 1.7 to 1 asymmetry between x and y at pr = 3.0 GeV.



Comparison with Hydrodynamic Models

DT, J. Lauret, E.V. Shuryak CD
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e Can account for the magnitude of v9 and dependence on centrality — roughly

e Can account for the linear rise but not for the saturation of vo at moderate

momenta



Comparison with the Boltzmann Equation: Denes Molnar + M. Gyulassy

® Classical Massless Particles with Constant Cross Sections
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e The Boltzmann equation predicted a flattening of v at high pr

e The observed v, (pr) is consistent with viscous/Boltzmann effects.



Langevin and Heavy Quarks

e A tool to study elliptic flow

p~\]T m

e The collision only scarcely changes the direction of the charm quark

e The charm quark undergoes a random walk suffering many collisions
provided £, s, < L

/\/\

2 2
(88) ~Nyiey (00) ~ Nkick%




Langevin description of heavy quark thermalization:

e Write down an equation of motion for the heavy quarks.

dp

o = NP + &(2)

e When the number of kicks is large we replace the kicks by random kicks: &(t).

(G0 (1)) = 50,6(t = 1)

® K IS the mean squared momentum transfer per unit time.

e 1/1p is what we intuitively called 7GNM.

e The fluctuation dissipation theorem relates the noise to the drag:

B K
- 9TE

1D



Hydro + Heavy Quarks

Bjorken Expansion J
;T .
Polo
< >

beam direction
e Put the heavy quarks into the hydro subject to Drag + Langevin Random
Kicks
e Take ideal EOS p = ¢/3 and a Bjorken Expansion

e Take initial spectrum of heavy quarks from LO-pQCD.



Results for K 4 4 and vy for charm quarks:
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Transition from hydro-like to kinetic regime #1

Examine the initial-angle final-angle correlation function in #1

P(A¢) = Probability the angle changes by A¢

1.2
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Transition from hydro-like to kinetic regime #2

Examine the initial-angle final-angle correlation function in #2

P(A¢) = Probability the angle changes by A¢

~ 0.22 5 190
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Conclusions
e Hydro is Qualitatively Correct as a function of centrality and pr
e Definite failures in peripheral collisions.

e Need a formalism which interpolates between equilbirium and kinetics to

describe vo(pr) and R4

e The transport scale needed to describe v (pT) (without quark coalesence)

is too small to describe R 4 4



Solving the Relativistic Navier Stokes Equations RNSE

e The RNSE as written can not be solved. There are unstable modes which

propagate faster than the speed of light.

e \Why? Because the stress RNSE tensor is not allowed time to change.

'LJ — 1,.] Y . (¥ ) 1

T, nstanty — " (8 v + v 35 ;v )

e Can make many models (at least seven) which relax to the RNSE.
(Drude, Maxwell, P.C. Martin, Mueller, Israel, L. Lindblom, R. Geroch,

Ottinger)
T,

V18

-~ i,.] Jadb S giga
O n (8?} + 0v 35 azv)

e |n the regime of validity of hydrodynamics the models all agree with each
other and with RNSE.

Can solve these models



A simple model: Inspired by H.C. Ottinger, Physica 1997

e Imagine a tensor c;; which relaxes quickly to 9;v; + 0;v;

Oici; — (Ojv; + 0v;) = Cij 4 (¢ij)

0 T2

1=

where ¢;; = (t?" C) 5@' and <Cz‘j> = Ci5 — 3G

e For small 79 and 7 we have:
cij & 7005 0" + 12 (0 + Ojv; — g&jﬁlvl)
® Then the “effective” pressure for small strains is given by:
Tij =~ p(dij — a1 cij)
Compare this to the canonical form:
T;; = pbij + 0c0v' +n(0vj + Ov; — géij(?lvl)

Can map, (70, T2, a1) — (0,1, Coo)



Another Model: (Inspired by Lindblom and Geroch, Phys. Dev. D1994)

® \Write a set conservation/balance laws:

where THY
Ao
1P

Ou(N*) = 0
Ou(TH) = 0
Ou(ArPy = [P

nut
eufu” + pA*Y +utq” +u¥ gt + THY

aT AH(a,,B)

L e 2T nap 2T a8 4 By
| 30 KT

e A completely different model at short times

e Only the long time behavior is the same. The long time behavior is

controlled by the viscous coefficients.

None of the details of these models should matter.



Sod’s Test Problem

e (GeV/im®)

n/(e +p) = )\mfp =2 fm
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Compare the different models:
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The solutions are very similar but different from ideal hydro.

x(fm)



Compare the stress tensor with the Navier Stokes Equations:

o
o

2 |
r1«ﬂvj+6jvf¥36”6,v)

T (GeV/im°)
o
N

O
N
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The stress tensor is close to its canoncial form.



Summary & Warnings
e All models agree about the solution to the Navier Stokes equations

® The stress energy tensor is almost always very close to

T (aw + oy — g(swawl)

Warnings: This holds in the regime of validity of hydrodynamics.

1. The only natural initial condition is
T, =n (82’09 + v — 557’78;1/)

2. In general the models have several free parameters. In the regime of validity

the solution only depends on the viscosity . Check this!

3. Werner-Israel becomes acausal away from equilibrium states.



When the viscous term is about half of the pressure :
e The models disagree with each other.
e 7" is not asymptotic with ~ n(9"v? + &’ v* — %5”8ﬂ)l)

Freezeout is not arbitrary but is signaled by the equations



Bjorken Solution with transverse expansion:
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e First the viscous case does less longitudinal work.

® Then the transverse velocity grows more rapidly because the transverse pressure is

larger.

e The larger transverse velocity then reduces the energy density more quickly than ideal

hydro.

Viscous corrections do NOT integrate to give an O(1) change to the flow.



Compare the two models of viscosity:
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The minimal model of 1) and the Const X.-section model have the same radial flow.



Conclusions:

® Viscosity does not change the ideal hydrodynamic solution particularly

much.



